Zaman Yolculuğunu Araştırma Merkezi © 1998 Cetin BAL - GSM:+90  05366063183 -Turkey/Denizli

 

KUANTUM  FİZİĞİ


Yüzyılımızın başında ortaya atılan iki teori, fizik ve felsefe dünyamızı çok derinden etkiledi. Bunlar kuantum ve rölativite teorileriydi. Rölativite, tek başına kendi yolunda yürüyen bir adamın ürünüyken, kuantum teorisi birçok kişinin katkılarıyla oluşmuştu: Planck, Einstein, Bohr, De Broglie, Schroedinger, Heisenberg, Dirac ve Pauli gibi… Ve her birine bu katkılarından dolayı Nobel ödülü verilmişti.


Otuz yıl kadar süren bir arayışın sonunda da kuantum mekaniği denilen yeni bir bilim felsefesi doğdu. Kısaca tanımlamak gerekirse, atom altı parçacıklarının fizksel yapılarını ( Konum, momentum,…gibi), matematiksel bazı denklemlerle açıklama sistematiğidir.

” Olabilir desinler, ama olur demesinler.”
Cicero

“Olmaz olmaz deme, olmaz olmaz..”
Atasözü

Niels Bohr şöyle dedi: ” Bir süre önce yine burada Kopenhag’ da özellikle olguculuk yanlılarının katılmış olduğu bir felsefe konferansı vardı. Bunda Viyana Okulu’ nun üyeleri büyük rol oynadılar. Bu filozofların önünde kuantum teorisinin yorumunu yapmaya çalıştım. Konferansımı verdikten sonra karşıt hiçbir düşünceyle ve zor herhangi bir soruyla karşılaşmadım. Ama bunun benim için çok korkunç olduğunu itiraf etmeliyim. Çünkü bir insan kuantum teorisinden ürkmezse, onu anlaması da olanaksızdır. Belki de o kadar kötü bir konferans verdim ki, kimse neden söz ettiğimi anlamadı.

Klasik Fiziğin Çözemedikleri
Kuantum kuramının doğuşunu kavrayabilmek için biraz gerilere gitmemiz gerekiyor. 19. yy sonlarına. Üç önemli problem,klasik görüşlerle açıklanamıyordu:

1. Siyah cisim ışımasının enerji dağılımı (morötesi felaket!)
2. Fotoelektrik olay
3. Atomların kararlılığı

Gazların kinetik kuramı, klasik fiziğin çok önemli başarılarından biriydi. Bu kurama göre, hiç bir molekülü dışarı kaçırmayacak ideal bir gaz kabındaki N molekülün toplam enerjisi E olsun. Bu toplam enerji (E) , enerjinin eşit dağılımı yasası diye bilinen temel bir istatistiksel teoreme göre ortalama olarak moleküllere eşit olarak dağılmıştır. Ortalama diyoruz, çünkü istatistiksel açıdan kesin veriler değil, ancak ortalama değerler elde edilebilir. Lord Rayleigh ve Sir James Jeans, gazların kinetik kuramına başarıyla uygulanan istatistiksel modeli, iç duvarları kusursuz ayna olan kutuda hapsedilmiş “ışık” dalgalarına uygulamaya çalıştılar. Ama burada temel bir zorlukla karşılaştılar. Bir gaz kabındaki molekül sayısı çoktu; ama “sonlu” ydu, oysa ışığın hapsolduğu ideal bir ayna cidarlı kutuda farklı titreşim tiplerinin sayısı “sonsuz”du. İşi basitleştirmek için “Jean Küpü”nün yalnızca sağ ve sol iç duvarları arasında gidip gelen dalgaları düşünelim. Bu dalgalar, duvarlarda zamanla genliğin kaybolacağını söyleyen sınır koşullarına uymalıdır… Bunu üç boyutta düşündüğümüzde “sonsuzluk” sayısının daha da artacağı açıktır. Titreşim modu (düğüm noktası) sayısı sonsuz, ama enerji sonlu. Yani titreşim modu başına düşen enerji = E/ sonsuz = tanımsız. Bu, kuşkusuz saçma bir sonuçtur. Yani açıkça, klasik kuram, artık cisimlerin doğasına ilişkin bilgilerimizle çelişmekteydi. Atomik ölçekte,maddenin davranışını açıklamak için klasik fiziğin uygulama denemeleri tamamen başarısız oldu.


Siyah cisim ışıması,fotoelektrik olay ve bir gaz deşarjında atomların yaydığı keskin çizgiler klasik fizik çerçevesinde anlaşılamadı. George Gamow ‘un dediği gibi:” Bir kuram, cisimlerin doğası ile ilgili bilgilerimizle çeliştiği zaman, cisimlerin yapısı değil kuram yanlış olmalıdır”. Doğaya yeni bir bakış açısıyla bakmak gerekiyordu. Bu devrim, 1900 ile 1930 arasında gerçekleşti. Kuantum Mekaniği denen bu yeni yaklaşım atom,molekül ve çekirdeklerin davranışını başarıyla açıkladı.



KUANTUM FİZİĞİNİN ÖYKÜSÜ


Belki de hiçbir kuram ,kuantum fiziği kadar bir yüzyıla böylesine belirgin bir damga vurmamıştır .1900 yılında Max Planck’ın kara cisim ışımasını kuantumlanmış enerji yayımıyla açıklamasının fizikte yarattığı devrim ,temposundan hiç yitirmeden 20. yüzyıl boyunca yeni kuşak bilim adamlarının olağanüstü düşünce ürünleriyle zenginleşerek sürdü . Bugün eriştiğimiz bilgi düzeyi farkında olalım ya da olmayalım yaşamımızı etkileyen , kolaylaştıran pek çok uygulamayı ,işte bu bilimin öncülerine borçluyuz. Geçtiğimiz yüzyılın en önemli düşünsel başarılarından biri de , atomaltı ölçekteki evreni inceleyen kuantum mekaniğinin tersine .kozmos ölçeğinde etkili kütle çekimi betimleyen genel görelilik .birbiriyle uyuşmamalarına karşın bu iki kuram birbirlerine tamamlayarak geliştiler . Belki de önümüzdeki yıllarda bu kuramları özdeşleştirmek için sürdürülen çabalar meyvelerini verecek ve insanlık doğanın evrenin işleyişi konusunda yepyeni bir anlayışa kavuşacak..

1897: PİETER ZEEMAN & JOSEPH THOMSON ; Zeeman ışığın bir atom içindeki yüklü parçacıkların hareketi sonucu yayımlandığını buldu. Thomson’da elektronu keşfetti .

1900:MAX PLANCK; Kara cisim ışımasını kuantumlanmış enerji yayımıyla açıkladı; kuantum kuramı böylece doğmuş oldu.

1905: ALBERT EİNSTEİN ; Dalga özellikleri olan ışığın aynı zamanda daha sonra foton diye adlandırılacak olan belirli büyüklükte enerji paketlerinden oluştuğu düşüncesini ortaya attı.

1911-1913: ERNEST RUTHERFORD& NIELS BOHR ; Rutherford atomun çekirdek modelini oluşturdu . Bohr ise ,atomu bir gezegen sistemi gibi belirledi .Ayrıca durağan enerji durumlar kavramını ortaya attı. Hidrojenin tayfını açıkladı.

1914: JAMES FRANK & GUSTAV HERTZ ; Bir elektron saçılım deneyiyle durağan durumların varlığını doğruladılar

1923: ARTHUR COMPTON; X-ışınlarının elektronlarla etkileşimlerinde minyatür bilardo topları gibi davrandıklarını gözlemledi .Böylece ışığın parçacık davranışı hakkında yeni kanıtlar ortaya koydu.

1923:LOUIS DE BROGLIE ; Madde parçacıklarının da dalga davranışı yaptığını öne sürerek dalga-parçacık ikiliğini genelleştirdi.

1924: SATYENDRA NATH BOSE &ALBERT EINSTEIN ; Kuantum parçacıklarını saymak için ,daha sonra BOHR- EINSTEIN diye adlandırılacak olan ,yeni bir yöntem buldular.Ayrıca uç derecelerde soğutulmuş atomların tek bir kuantum durumuna yoğuşacaklarını önerdiler . “BOSE- EINSTEIN YOĞUŞMASI” 1990′lı yıllarda deneysel olarak gerçekleştirildi.

1925: WOLFGANG PAULİ ; Aynı özelliklere sahip fermiyon türü iki parçacığın aynı enerji düzeyinde bulunamayacağını söyleyen “dışlama ilkesi” ni açıkladı .

1925: WERNER HEISENBERG & MAX BORN & PASCUAL JORDAN ; Kuantum mekaniğinin ilk biçimi olan matris mekaniğinin geliştirdiler ve kuantum alan kuramı yolunda ilk adımı attılar .

1926: ERWİN SCHRÖDİNGER; Kuantum fiziğinin “dalga mekaniği” diye adlandırılan yeni bir betimlemisini geliştirdi.yeni kavram daha sonra “Schrödinger denklemi ” diye adlandırılan ,bilimin en önemli formüllerinden birini de kapsıyordu.

1926: ENRICO FERMİ &PAUL A.M.DIRAC; İki bilim adamı ,kuantum mekaniğinin parçacıkları saymak için yeni bir yola gereksinme duyduğunu belirlediler “Fermi Dirac istatistiği”, katı hal fiziğine kapıyı araladı.

1926: DIRAC;Işığın kuantum kuramı üzerine çok önemli bir makale yayımladı

1927:WERNER HEISENBERG; Bir parçacığın aynı zamanda hem konumunu hem de hızını ölçmenin olanaksız olduğunu gösteren ünlü “belirsizlik ilkesi”ni açıkladı.

1928: DIRAC; Elektronun karşı maddenin varlığını da öngören relativistik bir kuramını ortaya koydu .

1932: CARL DAVID ANDERSON; Karşı maddeyi keşfetti . Bu parçacık ,pozitron adı verilen bir antielektrondu.

1934: HIDEKI YUKAWA; Çekirdek kuvvetlerinin ,mezon denen ağır parçacıklarca iletildiği düşüncesini ortaya attı.Bunların elektromanyetik kuvvete aracılık eden fotonlarla benzer işlev yaptığını öne sürdü.

1946-48: ISIDOR RABI & WILLIS LAMB&POLYKARP KUSCH; Dirac kuramında tutarsızlıklar keşfettiler.

1948: RICHARD FEYNMAN & JULLIAN SCHWINGER & SIN ILTRO TOMONAGA ; Kuantum elektro dinamik denen ve fotonlarla elektronların etkileşimini anlatan ilk eksiksiz kuramı geliştirdiler .Kuram ,Dirac kuramındaki tutarsızlıkları açıkladı.

1957: JOHN BARDEEN & LEON COOPER & ROBERT SCHRIEFFER ; Elektronların,kuantum özellikleri dirençsiz hareket olanağı veren çiftler oluşturabildiklerini gösterdiler.Bu süperiletkenlerin sıfır elektrik direncini açıkladı.

1959: YAKIR AHARONOV & DAVID BOHM ;Bir manyetik alanın ,elektronun kuantum özelliklerini klasik fiziğin yasakladığı bir biçimde etkilediğini öne sürdüler “Aharov –Bohm etkisi”,1960 yılında gözlendi ve akla gelmedik pek çok makroskopik etkinin gizli işaretlerini verdi.

1960: THEODORE MAİMAN ;Charles Townes ,Arthur Schawlow ve diğerlerinin daha önce yapmış oldukları çalışmaları ileri götürerek pratik kullanımlı ilk lazeri geliştirdi.

1964: JOHN S. BELL; “Bell eşitsizlikleri ” denen deneysel bir testle , kuantum mekaniğinin bir sistem için en eksiksiz tanımı verip vermediğinin sınanabileceğini söyledi.

1964: MURRAY GELL & MANN; Madde parçacıklarını oluşturan ve kuark adı verilen temel parçacıklarla ilgili bir model geliştirdi.Kuarkların varlığı 1969 yılında deneysel olarak kanıtlandı.

1970′LER: Parçacık fiziğinin maddenin dört temel kuvvet aracılığıyla etkileşen kuark ve leptonlardan oluştuğunu söyleyen Standart Model’in temelleri atıldı.Kuark modeli temelinde şiddetli çekirdek etkileşimlerini betimlemeyen “Kuantum renk dinamiği” kuramı geliştirildi.

1982: ALLAIN ASPECT; Bell eşitsizliklerinin deneysel bir sınavıyla kuantum mekaniğinin eksiksiz bir anlatım olduğunu gösterdi.

1995: ERIC CORNELL & CARL WİEMAN & WOLFGANG KETTERLE ; Mutlak sıfırın (-273 C) yalnızca milyonda bir derece üzerine kadar soğutulmuş metalik atom bulutlarını tek bir kuantum durumuna hapsederek ,70 yıl önce kuramsal varlığı öne sürülen BOSE & EİNSTEIN yoğuşmasını oluşturdular . Bu başarı atom lazeri ve süper akışkan gazlar gibi pratik uygulamalar için yolu açtı.
Kuantum Fiziğinin Garip Söylemleri

Üstüste Gelme

Kuantum fiziğinin belki de en garip (ve en çok itiraz alan) yönü bir sistemin aynı anda birkaç farklı durumda bulunabilmesi. Parçacıklar doğal olarak böyle durumlara giriyorlar. Örneğin bir elektron tek bir noktada değil de değişik noktalarda bulunabilir. Max Born 1926 yılında de Broglie dalgalarının fiziksel bir dalga olmadığını, bir olasılık dalgası olarak yorumlanması gerektiği düşüncesini ortaya attı. Buna göre parçacıklar de Broglie dalgasının bulunduğu her yerde bulunur, bunlar dalganın güçlü olduğu yerlerde yüksek olasılıkla, zayıf olduğu yerlerde de düşük olasılıkla bulunuyor. Böylece parçacığın konumu doğal bir belirsizlik taşır. Max Born bu çalışmasından dolayı 1954 yılında Nobel ödülünü kazandı. Erwin Schrödinger, üstüste gelme ilkesinin yarattığı gariplikleri en açık biçimde ortaya koyan bir düşünce deneyi tasarladı. Schrödinger’in kedisi olarak bilinen bu deneyde bir kedi aynı anda hem diri hem de ölü olduğu bir duruma sokulabiliyordu. Hem mikroskobik ölçekte hem de bazı makroskobik cisimlerde var olduğu bilinen üstüste gelme olgusunun yorumu sürekli tartışma konusu olagelmiştir.

Tünelleme

Klasik fiziğe göre herhangi bir cismin kinetik enerjisi negatif olamaz. Dolayısıyla duvara attığım bir top duvarı delmeden öteki tarafa geçemez; çünkü duvarın getirmiş olduğu enerji engelini aşabilmek için klasik fiziğe göre duvarın içinden duvarı delmeden geçmek için negatif kinetik enerjiye sahip olmalıdır. Bu da klasik fiziğe aykırıdır. Kuantum kuramına göreyse, bir enerji engelini aşmak için yeterli enerjisi olmayan bir kuantum parçacığı , yine de bu engeli aşabilir. Yani engelin öteki tarafında bulunma olasılığı sıfır değildir. Kuramın tahmin ettiği ve doğruluğu deneylerle kanıtlanmış olan ve radyoaktivite gibi olguları açıklayan bu etkiye tünelleme adı verilir.
Schrödinger Denklemi

Bir kuantum sistemi hakkında bize her bilgiyi veren araç dalga fonksiyonu adı verilen bir fonksiyondur. Dalga fonksiyonunun uzaya ve zamana bağlı değişimini veren denklemi ilk bulan Avusturyalı fizikçi Erwin Schrödinger’dir. Bu yüzden denklem Schrödinger denklemi adıyla anılır. Schrödinger denklemine göre dalga fonksiyonunun zamana göre değişimini Hamiltonian adı verilen bir operatör kontrol eder. Hamiltonian operatörü (bazen enerji operatörü adıyla da anılır) sistemin enerjisi ile yakından ilgilidir. Kuantum sisteminin sahip olabileceği enerji değerlerini Hamiltonian operatörü belirler. Bunu veren denkleme de zamandan bağımsız Schrödinger denklemi adı verilir. Schrödinger denkleminin çözümü olan dalga fonksiyonunun karesi kuantum sistemi ile ilgili olasılıkları verir.


De Broglie Dalgası

1923 yılında aristokrat bir aileden gelen Fransız fizikçi Louis de Broglie ışığın bazen dalga bazen de parçacık gibi davranmasından esinlenerek, diğer parçacıkların da dalga yönleri olabileceği savını ortaya attı. Buna göre momentumu p olan bir parçacığa dalgaboyu l =h/p olan bir dalga eşlik ediyor ve parçacığın özelliklerini tamamlıyordu. Nasıl bir gitar teli uzunluğuna bağlı olarak sadece belli frekanslarda titreşiyorsa, atomun çevresinde dolanan bir elektronun de Broglie dalgası da sadece belli dalgaboylarına sahip olmalıydı. Bu çeşit bir dalga 1913 yılında Bohr’un hidrojen atomundaki elektronların enerji seviyelerini bulduğunda yaptığı varsayımları açıklıyordu. Makroskobik cisimlerin momentumları çok daha büyük olduğundan, de Broglie dalgasının dalgaboyu ölçülemeyecek kadar küçüktür. Bu nedenle makroskobik cisimlerin dalga özellikleri gözlemlenemez. De Broglie’nin bu çalışması, kendisinin 1929 yılında aldığı dışında iki Nobel ödülü daha üretti. 1926′da Avusturyalı fizikçi Erwin Schrödinger, de Broglie’nin çalışmasını genişleterek kuantum kuramının temel denklemini elde etti ve 1933′te Nobel ödülünü aldı. 1927 yılında birbirlerinden bağımsız olarak ABD’de Davisson ve Germer, İngiltere’de de Thomson, bir kristale gönderilen elektronların tıpkı dalgalar gibi kırınıma uğradıklarını gösterdiler. Davisson ve Thomson’da 1937 yılında Nobel aldılar.


Belirsizlik İlkesi

Kuantum kuramının belirsizlik ilkesi, bir parçacığın bazı farklı özelliklerinin ikisinin de kesin olarak belirlenemeyeceğini söyler. Örneğin bir parçacığın konumuyla momentumu (momentum bir cismin kütlesiyle hızının çarpımıdır) aynı anda tam olarak ölçülemez. Kuantum kuramına göre parçacığın bu iki özelliğindeki belirsizliklerin çarpımı en az Planck sabiti h=6,626×10^-34 J.s kadardır. Konumu belli bir anda kesin olarak bilinen bir parçacığın momentumu sonsuz belirsizliktedir ve bu yüzden parçacık kısa sürede o noktadan ayrılır ve uzaya dağılır. Benzer şekilde momentumu kesin olarak bilinen bir parçacığın konumu sonsuz belirsizliktedir, yani böyle bir parçacık uzayın her köşesinde bulunabilir. Bu nedenle doğada rastlanan parçacıkların bulunduğu kuantum durumlarında parçacıkların hem konum hem de momentumu bir miktar belirsiz olmak zorunda. Alman fizikçi Werner Heisenberg, ünlü mikroskop örneğini bu ilkeyi açıklamak için geliştirdi. Bir parçacığın yerini “görerek” ölçmeye çalıştığınızı düşünün. Böyle bir ölçümde parçacığın üzerine ışık göndermek, dolayısıyla parçacıkla etkileşmek gerekir. Bu bile parçacığın konumunu tam olarak belirlemeye yetmez. Bu ölçümde en azından kullanılan ışığın dalgaboyu kadar bir hata yapılır. Bunun yanı sıra ışık parçacıkla etkileştiği için ölçüm, parçacığın hızında bir değişmeye de neden olur. ışık parçacığa çarpıp yansıdığı için en az bir fotonun momentumu parçacığa aktarılır. Parçacığın momentumu ölçümden önce tam olarak bilinse bile, konumun ölçülmesi parçacığın momentumunu h/l kadar değiştirir. Bu nedenle, parçacığın yerini daha iyi belirlemek için daha kısa dalga boylu ışık kullansak bile, ölçümümüz momentumdaki belirsizliği arttıracak, ama her durumda ikisinin belirsizlikleri çarpımı en az 'h' kadar olacaktır.


Parçacıkların uzaydaki doğrusal hareketleri dışında kendi iç dinamikleriyle ilgili hareketleri de vardır. Bu parçacıkları doğrusal değil de küçük kürecikler şeklinde düşünürsek, bu kürelerin kendi çevrelerinde dönmeleri de etkileri gözlemlenebilen bir hareket şeklidir. Bu hareket için İngilizce’de kendi etrafında dönmek demek olan “spin” kullanılır. Spin de bir açısal momentum türüdür. Fakat kuantum kuramı bazı parçacıkların (elektronlar gibi) spinlerinin gerçekten böyle bir dönme sonucu oluşmayacağını söylüyor. Bu rağmen dönme benzetmesi bir çok açıdan iyi bir açıklama biçimi gibi görünüyor. Kuantum kuramına göre spini “s” olan bir parçacığın spin durumu sadece (2s+1) değişik değer alabilir yada bu (2s+1) durumun üst üste gelmesiyle oluşabilir. Elektron, proton ve nötronların spinleri s=1/2 dir. Yani bu parçacıkları uzaydaki hareketlerinin dışında 2 değişik durumda da bulunabilirler. Zayıf etkileşimi ileten W ve Z parçacıklarının spini 1′dir. Bunlar da 3 değişik durumda bulunabilirler. Fotonlarsa ışık hızında hareket ettikleri için spinleri 1 olmasına karşın sadece iki farklı spin durumunda bulunabilirler. Bunların dışında bir kaç parçacıktan oluşmuş birleşik sistemlerin spinide hesaplanabilir. Örneğin helyum-4 atomunun spini 0 olarak hesaplanabiliyor. Spini olan bir çok parçacık spinlerinin yönüne bağlı olarak uzayda manyetik alan oluştururlar. Bu anlamda bu tip parçacıkları küçük birer mıknatıs olarak da düşünmek mümkün. Eğer elektronlar bir manyetik alandan geçirilirse, kendi mıktanatıslıklarının yönüne bağlı olarak değişik yönlere sapmaları gerekir. 1921 yılında Stern ve Gerlach bu deneyi yaparak elektronların sadece iki değişik yöne saptıklarını, böylece bu parçacıkların sadece iki farklı spin durumunda bulunabildiklerini göstererek kuantum fiziğinin en güçlü kanıtlarından birini elde ettiler

 

Kuantum Teorisi | Teori Hakkında Yapılan Çalışmalar


Kuantum teorisi, atomik olaylardaki enerjiyi açıklamaya yarayan bir fizik teorisidir. Kuantum kelimesi yalnız başına kullanıldığında bir sistemin değiştirebileceği enerjinin küçük bir kısmı anlamına gelir. Mesela foton, elektromanyetik radyasyon kuantumudur. Kuantum teorisi enerjinin devamlı olmadığını ve seviyelere sahip olduğunu, bu seviyelerin küçük kademeler halinde değişebileceğini matematik ifadelerle açıklar. Mesela; bir atomda elektronların çekirdek etrafında kendi yörüngelerindeki hareketleri, siyah cismin küçük miktarlar halinde ısı yayması(Max Planck'ın siyah cismin radyasyonunu buluşu), fotonun elektromanyetik radyasyonu (Bohr teorisi), fotoelektrik olayı, atom spektrumu (tayfı) kuantum teorisi ile izah edilebilir. Kuantum teorisi üzerine yapılan çalışmalar şunlardır:

Plank'ın radyasyon teorisi:

1901 senesinde Alman fizikçisi bir cismin ufak bir oyuğundan yaydığı ısı enerjisinin frekans dağılımını (radyasyonunu), ışığın elektromanyetik teorisine benzeterek, cisme ait en küçük parçalarının titreşimler yaparak yaydığı enerjisine benzetmiş ve matematik olarak bunu ifade etmiştir. Yaptığı hesaplardan, bu titreşimlerin genliklerinin sınırlı olması gerektiğini anladı. Mesela bir salınımın veya titreşimin genliği 1 m veya 2 m olabilmekteydi, arada bir değer alamamaktaydı. Bunun sonucu olarak, sadece belirli genlikteki salınımlara müsaade edildiğinden dolayı, enerji artık düzgün bir şekilde alınamamaktaydı veya yayılamamaktaydı. Böylece işlem sarsıntılı olarak, müsaade edilen bir genlikten diğer genliğe sıçrayarak ortaya çıkacaktı. Böyle bir sıçramayı ortaya çıkarmak için gerekli olan enerji miktarını bir kuantumluk enerji olarak isimlendirdi. Ayrıca bir kuantumluk enerjinin, salınımın frekansı ile, Planck sabiti denen sabit bir sayının çarpımına eşit olduğunu kabul etti. Bu sabite h=6,62·10-27 erg. saniye şeklinde çok küçük bir değer olduğu için sıçramalar da çok düşüktür.

Bu kabuller o kadar değişiktir ki, Planck bile geçerliliğinden şüpheye düştü. Ancak 1905'te Albert Einstein, önemli bir adım atarak, bunları ciddi bir şekilde inceledi. Işığın kendisinin kuantumların birleşmesinden meydana gelen taneciklerden ibaret olduğunun kabul edilmesi gerektiğine işaret etti. Yoksa, teoride bir dengesizlik ortaya çıkmaktaydı. Şimdi bu taneciklere foton denilmektedir ve bunların enerjileri, frekansları ile Planck sabitinin çarpımına eşittir. E=h·f. Bu kabul, metalik bir yüzeye ışığın çarpmasıyla bu yüzeyden elektronların koparılması olayını açıklayarak pekiştirdi. Buna fotoelektrik olayı denilir.

Dalga ve parçacık teorisi:

On yedinci yüzyılda Isaac Newton, ışığın parçacıklardan meydana geldiğini kabul etmiş ve bir geometrik optik geliştirmişti. Ancak daha sonra meydana gelen gelişmeler ve ışığın hızının diğer şeffaf cisimlerde ölçülmesi, James Clerk Maxwell'in geliştirdiği elektromağnetik dalga teorisinin kabulünü zorlamıştı. Ancak Einstein'in çalışmasıyla parçacık teorisi canlanmış ve dalga teorisiyle rekabet eder duruma gelmiş oldu.

Atom spektrumu (tayfı)

1993'te Danimarkalı Niels Bohr kuantum fikrini, klasik teorilerin o zamana kadar açıklayamadığı, atom spektrumu teorisine tatbik ederek önemli bir adım attı. İngiliz Ernest Rutherford'un yaptığı deneylerden, atomun minyatür güneş sistemi gibi, ortasında pozitif yüklü bir çekirdek etrafından dönen elektronlardan ibaret olduğu kabulünü getirdi. Ancak atomu tutan elektriksel kuvvetlerin, kütle çekim kuvvetlerinden farklı olduğunu iddia eden Maxwell, elektronların yörüngelerinde kararlı olmayacağını bildirdi. Buna göre elektronlar enerjilerini sürekli frekansa sahib olan ışık şeklinde yayacaklardı. Bu ise atom spektrumunda görülen ayrık frekansları açıklamaktan uzaktı. Hatta atomların kararlı durumu bile açıklanamıyordu.

Bohr klasik teorinin kabullerinden ayrılarak bazan eskiye taban tabana zıt yeni kabuller yaparak işe başladı:
Elektronlar kararlı yörüngeye sahiptirler.
Yörüngelerinde bulundukça enerji yaymamaktaydılar.


Sadece belirli yörüngeler mümkündür. (Aynen Planck belirli salınım genliklerine izin verdiği gibi.)
Elektronlar bir yörüngeden diğer yörüngeye sıçrayabilmektedirler. Ancak bu halde meydana gelen enerji farkı, foton yaymak veya almakla karşılanacaktır. Bu fotonun f frekansı da E enerji farkının h Planck sabitine bölünmesiyle elde edilecekti: f = E / h  Bu kabuller şaşırtıcı sonuçlar çıkardı. Bohr, yüksek bir yaklaşımla hidrojen atomunun spektrum frekanslarını hesapladı. Eski ve yeni kabullerin karışımı olan bu teorinin sonuçları artık herkesin dikkatini çekmekteydi.

Bir elektronun hareketinin kuantum sayıları denilen belirli sayılara bağlı olduğu anlaşılmıştı. Kuantum sayıları tam sayılar veya tek sayıların yarılarından ibaretti. Bu sayılar Bohr teorisindeki müsaade edilen yörüngelerle ilgiliydi. Bohr'un teorisiyle atomun içine nüfuz edilmekte olduğu için, bu teorinin önemi büyüktür. Ancak seneler sonra bilim adamları, bunun da açıklayamayacağı olaylarla karşılaştılar. Bunun sonucu olarak iki farklı yönden gelinerek bir modern teori geliştirildi.

Dalga mekaniği:

1923'te Fransız Louis de Broglie, ışığın dalgalar tarafından iletilen fotonlardan ibaret olduğunu iddia etti. Ona göre elektron ve diğer atomik parçacıklar da dalgalarla hareket etmekteydi. Ayrıca iddiasının Bohr'un müsaade edilen yörüngeler kabulüyle de uyuştuğunu gösterdiyse de pek dikkati çekmedi.

Erwin Schrödinger 1925'de bu iddianın dalga kısmını alarak, Newton'un mekaniğine tatbik etti. Bu yeni ortaya çıkan Dalga mekaniği'ne göre elektronlar parçacıklar olarak değil, farazi bir matematiksel uzayda yayılı dalgalar olarak belirmekteydi. Bu kabuller, Planck'ın salınımlarının kuantum davranışlarını, hidrojen atomunun spektrumunu açıklaması ve çok önemli kuantum sayılarını doğrudan doğruya ortaya çıkarması yönünden, ciddiye alındı. Daha sonra yapılan deneyler De Broglie'nin madde dalgalarının mevcudiyetini de göstermiştir

Matris mekaniği:

Werner Heisenberg de 1925'de tamamen farklı bir yol takip ederek, temel fiziksel büyüklükleri düzenli bir şekilde tablolar halinde yazdı. Bunlara matris denildiği için, teorisi de Matris Mekaniği olarak isimlendirildi. Bir parçacığın koordinatını ve momentumunu (kütlesiyle hızının çarpımı) q ve p ile gösterdiğinde p kere q'nün, q kere p olmadığını ve aradaki farkının Planck sabitiyle ilgili olduğunu keşfetti. Bu, günümüzde modern atom teorisinin temel taşlarından birini teşkil etmektedir. Heisenberg'in teorisi görünüşte çok farklı zannedilen Schrödinger'inkiyle aynı sonuçları vermekteydi. Paul Dirac ise, her ikisinin klasik mekaniğe çok benzeyen kuantum mekaniğinin özel bir şekli olduğunu gösterdi.

Belirsizlik prensibi:

Yukarıdaki gelişmeleri anlatan kuantum teorisi bir başarıdan diğerine gitmekteydi. Ancak temelinin fiziksel bakımdan tutarlı olduğunda hala şüpheler mevcuttur. Mesela p momentum ile q koordinatlarının çarpımında eğer q·p çarpımı, p·q çarpımına eşit değilse bu büyüklükler alışılagelen değerler alamamaktaydılar. 1927'de Heisenberg, belirsizlik prensibini ortaya koyarak bu konuda rahatlık sağladı.

 

KUANTUM TEORİSİ VE TEMEL İLKELERİ

Erol Kurt:

Lord Kelvin, XIX.yy.'in sonuna doğru fiziğin hemen hemen tamamlandığı görüşündedir. O'na göre yalnızca ısı ve ışık kuramı üzerine bazı bilinmeyenler vardı. Fakat H. Hertz'in 1887'de keşfettiği "fotoelektrik etki ve ısı kuramı" ile, gerçekleştirilen deneyler arasında garip uyumsuzluklar baş gösteriyordu. İşin ilginç yanı, bilim adamlarının; pek önemsemediği bir konunun, tüm detaylarının önceden açıklandığı bir kuramın başlarına çorap örmeye başlamasıydı.

Alman Ağırlıklar ve Ölçüler Enstitüsü, yeni elektrik lambaları için bir ölçek ararken, fizikçi W. Wien'den bir "kara cisim'in sıcaklığıyla, onun yaydığı ışınlar arasındaki bağıntıyı belirlemesini istedi. Bilindiği üzere ısıtılan cisimler ısırdı. Sözgelimi bir bakır parçası morötesi ışınları yaymadan önce İlkin kızaracak, sonra akkor hale gelecektir. Bu aşamada cismin yaydığı maksirnurn ışınlar mora kayacaktır.

1900'da Berlin Üniversitesi profesörlerinden M. Planck bu problemi kuram yoluyla çözmeye çalışırken olanlar oldu. Planck'a göre kara cisim füzerine gelen bütün ışık, elektromagnetik dalgaları yutarak büyük enerjilere sahip olabilen cisim) ışıması-soğurması denen bu problem, gözlem ve deneylerle ancak şu şartta uyuşuyordu: Kara cisme ulaşan ya da ondan yayılan ışınların sürekli değil; aralıklı, kesik kesik enerji paketleri şeklinde olması gerekir.

Bu ifade açıkçası, klasik fizikte hep sürekli bir büyüklük olarak algılanan ve böylece işlemlere sokulan enerjinin aslında parçalı da olabileceğini söylüyordu. Bundan dolayı yeni bulguya "miktar parça" anlamında "kuantum' denildi.

Doğrusunu söylemek gerekirse, bunu kabul etmek için klasik bilim anlayışını bir tarafa bırakmak gerekliydi.' Bu nedenle, Planck bu varsayımı gönülsüz olarak ortaya koydu ve hesap hatasının söz konusu olabileceğini vurguladı.

Teorinin tarihsel gelişimi

Planck'ın bulgusundan 5 yıl sonra A.Einstein fotoelektrik etki olarak bilinen fizik olayını açıkladı ve Nobel ödülünü almaya da hak kazandı. Einstein'e göre ışıklı parçacıklar, frekanslarıyla orantılı olarak enerji taşır ve bu enerji metallerin elektronlarına aktarılabilirdi. Böylece vakum ortamda, ışık yoluyla metalden kolayca elektron sökülebilir, elektrik akımı iletilebilirdi. Işığın C.Huygens'den beri bilinen dalga yapısı bu olayı açıklayamazdı. Çünkü çok kısa bir sürede, ışığın frekansının büyüklüğüne bağlı olarak metalden elektron sökülmesi ancak ışığın tanecik şeklinde düşünülmesiyle mümkündü. Planck haklı çıkmıştı, kesikli büyüklükler (kuantlar) görüşü anlam kazanıyor, bilim adamları mikroskobik olayları düşünürken bu çözüm ihtimalini de göz önünde tutuyorlardı.

1906'da, E.Rutherford atomun yapısının araştırılması amacıyla yaptığı deneylerde, atomun Güneş Sistemi benzeri bir yapıda olduğunu ve merkezde (+) artı yüklü bir çekirdekle bu çekirdeği çevreleyen (-) eksi yüklü elektronlardan oluştuğunu ortaya koydu. Fakat bu şekilde açıklanmış bir atomda elektronların hareketi, klasik hareket denklemleriyle incelendiğinde ortaya çelişki çıkıyordu. Çünkü, bu durumda çekirdeğin çevresinde dolanan bir elektron, eninde sonunda çekirdeğe düşmeliydi. Bu doğruysa ne dünyanın ne de evrenin varolmaması gerekiyordu. Ortada, atom kalmıyordu. Bu sorunun üstesinden Danimarkalı genç bilim adamı N.Bohr geldi.Bohr elektronlar için atom çekirdeği etrafında belirli çembersel yörüngeler öngörüyordu. Bundan hareketle, açısal momentumun kuantalı, büyüklük olduğunu belirtiyor; Planck sabitinin (h), 2n'ye bölümünün tam katları şeklinde yörüngeler düşünüyordu. Kararlı yörüngedeki elektron bu yörüngeyi ancak enerji vererek ya da enerji alarak terkedebirdi. Bu geçişlerde enerjisi "hf" ile verilen fotonlar ısınıyor ya da soğuruluyordu. Bu ifade de fotoelektrik olaydaki gibi kuantalı enerjiyi Ön görüyordu, (h: panck sabiti; f: ışığın frekansı) Okullarımızda, geçerli atom teorisi olarak işlenen, Bohr'un bu bulgusu da kuantumluluk tezini destekliyordu.

Bohr'un atom teorisinin sonraları hidrojen ve hidrojen benzeri (son yörüngesinde bir elektron taşıyan) sistemler için geçerli olduğu gözlendi. Fizikçiler artık atomik düzeydeki yapılan açıklayabilmek için tek çıkar yol olarak kuantum teorisini kullanmaya devam ettiler. Dolayısıyla teorinin ana çatısı atomik yapıların gün ışığına çıkmasıyla oluşuyordu.

Atom teorisiyle alakalı bu gelişmeler sürerken 1922'de Amerikalı fizikçi H.Comptom, X ışınları üzerine yaptığı incelemelerde; "hf" enerjili olarak düşünülen fotonların serbest elektronlara çarptırılmasıyla bu ışınların "hf/c momentumlu olarak elektronlarla etkileştiğini gözlemledi. Bununla da kalmayarak, çarpışmadan sonra açığa çıkan ışının frekansının daha küçük olduğunu tesbit etti. Bu deney şunu kesin bir şekilde belirtiyordu ki mikroskobik sistemlerde kesikli paketçik yapıda çizgisel momentum öngörülebiliyordu. Bu da kuantumluluk hipotezine bir doğrulama getirmiş, teorinin tanımı genişlemiştir.

Almanya'da Göttingen Üniversitesi'nde araştırmacı olan W. Heissenberg, hocası M.Born ve arkadaşı P. Jordan ile birlikte çok elektronlu atomların açıklanması bağlamında "matris mekaniği" teorisini ortaya attı. Yine, 1923'de Paris Üniversitesi'ne verdiği doktora teziyle L. de Broglie, Heissenberg'in fikirlerini de destekleyerek yeni bir atom anlayışı gündeme getirdi: Elektronlar bir tanecik olarak değil fakat dalga olarak yorumlanmalıydı. Böylece, çekirdeğin çevresinde dolanan her tam dalga ancak belli bir yörüngeye rastgeliyor ve neden elektronların belirli yörüngelerde dolandığı bütünüyle açığa çıkıyordu. Bohr'un farkında olmadan, sezgisiyle teorisinde söz ettiği belirli yörüngeler çıkarımı böylece doğrulanmış oluyordu. Bu durumda enerjinin kuantumlu olmasına ek olarak çizgisel momentum gibi açısal momentumun da kuantumlu bir büyüklük olabileceği resmen ispatlanıyordu.

1926'da E.Schrödinger, de Broglie tarafından yorumlanan dalga teorisini tanımlayan dalga denklemini makaleler halinde açıkladı. Fizikte, bir kuramın anlaşılabilirliği, gözlenebilirliği ve uygulanabilirliği çok önemlidir. Bu nitelikleri taşıyan dalga denklemi ve dalga görüşü fizikçiler arasında çok çabuk kabul gördü. Fakat bir yandan da nasıl olup bu dalgaların tanecik gibi, Geiger sayacında tıklamalar oluşturduğu bir sorundu. Bohr, bu problemi elektronların dalga şeklinde nitelendirilmesinin ancak soyut olarak geçerli olabileceği fikrini ortaya atarak, çalışmalarda gerektiğinde dalga Özelliğinin gerektiğinde de tanecik özelliğinin kullanılması gerektiğinin altını çizerek çözümledi.

Kuantum teorisinin felsefesi

Ünlü kuramcı Bohr, "Kuantum teorisiyle şok olmayan kimse, onu anlamamıştır" der. Gerçekten de matematiksel olarak açık bir şekilde ifade edilmesine karşın bu teorinin felsefi alanda yorumlanması ve oluşturduğu problemlerin çözümlenmesi bir hayli zor görülüyor.

Kuantum teorisi bilime ve doğaya farklı bir bakış açısı getirmiştir. Şimdi, bu yenilikleri görebilmek için klasik ve kuantumlu anlayışın belli başlı özelliklerini ortaya koyalım. Öncelikle klasik fiziğin felsefi dayanaklarına bakarsak:

1) Klasik fizikte, bir cismin hızı, ivmesi, enerji ifadeleri gibi tüm nicelikler cismin konumunun zamana göre diferansiyelleri ile ifade edilir.

2} Yukarıda sözü edilen momentum. enerji gibi fiziksel büyüklüklerin bütün olarak ele alındığı görülür.

3) İrdelenen olaylar belli bir kesinlik, belirlilik taşır ve istenilen doğrulukta ve aynı anda bütün fiziksel büyüklükler ölçülebilir.

4) Evrenin geçmişinde oluşan olaylar incelenerek, geleceğe ilişkin bir yordama yapılabilir. Sözgelimi, Jüpiter Gezegeni şu zamanda, yörüngesinin şurasında ve bize bu kadar uzaklıkta olacaktır, denilebilir. Gözlem ve deneylerde küçük hatalar çıkabilme olasılığına karşın tahminlerimiz büyük ölçüde doğrulanır.

5) Klasik fizik ile incelenen her sistem ya da olay birbirinden bağımsız olarak düşünülür; bu sistemi oluşturan ve birbiri İle iletişim olanağı bulunmayan varlıklar bütünüyle ayrı olarak ele alınır.

6) Klasik olarak incelenen olay, gözlemci ve kullanılan deney aleti ile değişiklik göstermez.

Kuantum görüşünün kabul edilen temel olguları ise:

a) Olayların incelenmesinde kompleks yapıda ve bir olasılık denklemi olan Schrödinger dalga denklemi kullanılır. Bu denklemden vj/ dalga fonksiyonu bulunup işlemlerde konarak, konum, momentum ve diğer nicelikler elde edilir.

B) Fiziksel nicelikler kesikli parçalı yapıda ele alınır.

c) Kuantum teorisi fiziğe kuşku götürmez bir biçimde belirsizlik (indeterminizm) olgusunu sokmuştur.

d) Parçacıklar söz konusu olduğunda her büyüklük olasılıklarla belirlenir ve gelecekle ilgili tahminler olasılıklara dayanarak yapılabilir. Örneğin ışığın yapı taşı olan fotonların, uzayda bir yerde bulunması ancak olasılıklarla belirlenir.

e) Birbiriyle hiç iletişim olanağı bulunmayan iki varlık arasında "bağlılaşım-correlation" görülebilir. Örneğin aynı kaynaktan çıkan fotonların karşıt doğrultularda göstermiş olduğu davranışları, birbiri ile uyuşum halindedir.

f) Kuantumda; gözlemci, gözlenen ve gözlem aleti birbiriyle bir bütünlük oluşturur. Bunlar birbirlerinden ayrı düşünülemez.

Görüldüğü gibi klasik fizik ile kuantumcu düşünce birbirinden bir çok noktada farklılık gösterir. Bu farklılıklar ayrıntılı olarak göz önüne alındığında şu yorumlar yapılabilir:

Kuantum teorisinin önemli buluşlarından birisi belirsizlik bağıntısıdır. 1927'de Heissenberg tarafından ortaya konulan bu bağıntıya göre mikro boyutta tanımlı bir parçacığın, eş zamanlı olarak konum ve momentumunun tesbit edilmesi en az Planck sabit (h) kadar bir hata içerir. Aynı olgu eşzamanlı olarak, parçacığın enerjisi ile bu enerjiyi taşıdığı zaman için de söz konusudur. Örneğin bir elektronun bulunduğu uzayda konumunun tesbiti İçin, elektronun üstüne büyük frekansta ışık göndermeliyiz. Aksi halde elektronu gözlemleyenleyiz. Bu durumda yüksek frekanslı ışık elektronun konumunu belirler. Ancak elektrona bir hız verir. Dolayısıyla konumun belirlenmesiyle beraber parçacığın hızını ve momentumunu yitirmiş oluruz . Tersi olarak; elektronun momentumunu belirlemek İçin küçük frekanslı ışık kullanırız, bu durumda da konum belirlenemez.

İkinci önemli bulgu da "dalga/parçacık dualite'dir. Huygens'ten beri ışığın kırınım ve girişim yaptığı biliniyordu.Örneğin ışık Young deneyi düzeneğinden geçirilirse karşıdaki ekranda aydınlık-karanlık noktalar oluşur. Yani girişim yapar. Yine yarım bardak suya sokulan bir kalemin kırık olarak algılandığı görülür. Bu gibi olayların hepsi ancak dalga modeliyle açıklanabilir. Einstein'ın fotoelektrik olayını açıklamasından sonra ışığın parçacıktı yapıda olması gerektiği bulundu. Yine ışığın cisimler üzerine uyguladığı anlık basınçlar ve Geiger sayacında göstermiş olduğu etkiler bunu destekler. Sonunda Bohr, "Işığın dalgacık mı tanecik mi olduğunu belirlenmesi ancak gözlemcinin sorduğu soruya göre cevaplanabilir" diyerek gözlemcinin de vazgeçilmez biçimde teoride yerini alması gerektiğini belirtir.

Amerikalı J.Davisson ve L.Germer adlı bilim adamları elektronların da hızlı olarak bir kristal katıya çarptırıldıklarında dalga özelliği gösterebileceğini buldular. Böylece düalite yalnızca ışık (elektromagnetik dalga) İçin geçerli değil aynı zamanda maddesel parçacıklar için de geçerliydi. Bu da Broglie'ın öne sürdüğü elektronlar için dalga yapısının deneysel bir ispatıydı, aynı zamanda Kuantum teorisindeki düaliteyi, 1915'te, X ışınlarıyla yaptığı çalışmalarından dolayı Nobel ödülü alan VV.Bragg şöyle belirtiyordu. "Pazartesi, çarşamba ve cuma günleri parçacık kuramını; Salı, Perşembe ve Cumartesi günleri dalga kuramını öğretiyorum."

Diğer önemli yenilik ise olasılık kavramıdır. Bir parçacığın bir uzay bölgesinde bulunması ancak olasılıklarla bellidir. Parçacığın konumu için kesin koordinatlar verilemez. Born bu düşünceden hareketle Schrödinger'in ortaya attığı dalga fonksiyonunu yorumlamış ve y ile gösterilen bu kompleks fonksiyon için, uzayda bir noktada beili bir anda hesaplanan dalganın genliğinin karesinin, parçacığın o noktada o anda bulunması olasılığını verdiğini belirtmiştir.

Belirsizlik ilkesi , dualite, olasılık tanımı ve gözlemci-gözlenen bütünlüğü kuantum mekaniğine, Kopenhag yorumu olarak girmiştir ve tartışmalara rağmen halihazırda kuantum teorisinin en etkin yorumu olarak karşımıza çıkar. Kuantum felsefesinin ..sorunlarına bakıldığında önemli tartışmaların temelde, Young deneyinin yorumlanmasından kaynaklandığı görülür. Bilim adamları, fotonların iki ayrı delikten geçişinin mantıksal olarak nasıl algılanması gerektiği üzerinde durarak; fotonlarla gözlemci arasındaki ilişkiyi aramaktadırlar.

Bohr ve Kopenhag ekolü savunucuları fotonların, iki ayrı delikten geçmelerini iki ayrı dünyada hareketleri olarak düşünüyor. Onlara göre girişim bu birbirinden tamamen iki ayrı iki dünyadan her-birinin birlikte hazırlanarak birbirinin üstüne çakış-masıyla ve birbirlerini bütünleştirme siyle oluşur. Dolayısıyla sonuçta her iki dünyanın hakiki bir melezi oluşur. Başta Einstein olmak üzere pek çok fizikçiye bu melez-bütünleyici dünya yorumu pek sıcak gelmedi. 1935'te "Schrödinger kedisi" yorumu ortaya atıldı. Bu görüşe göre her an zehirlenmesi tehlikesi olan bir kedi kapalı bir kutudadır. Gözlemciye göre bu kedi her an ölü ya da diri bir halde bulunmalı, iki ayrı olasılık eşit olarak göz önünde tutulmalıdır. Bu aynı zamanda Young deneyinin iki ayrı delikle oluşturulan farklı dünyalarına benzer. Farklı nokta ise; kedinin ölü ya da diri olduğunu kesin belirleyene kadar kedinin iki durumunun da yan yana bulunduğunun öne sürülmesidir. Yani kedi, yarı canlı-yarı ölüdür, aynı zamanda.

Başka bir yorum da Everett'ten 1957'de gelir. Ona göre, birçok gözlenemez paralel evren mevcuttu. Bunlara Everett, "alternatif kuantum dünyaları" diyordu. Bütün olaylar bu dünyaların birinde, olasılıkların hepsi gerçekleşecek biçimde olmaktadır. Sonuçta bütün olasılıklar evrende varoluyordu. Zaman ilerledikçe daha pek çok yorum ortaya atıldı. Bunların içinde Wigner Gellmann, Bohm, Penrose gibi fizikçilerin yorumlarını saymak mümkün.

Kuantum ve bilim

Kuantum teorisinin ortaya koyduğu yeniliklere göre klasik fizikten farklı olarak doğanın bir bütünlük içinde ele alınması gerektiği belirtilir. Özellikİe gözlemcinin ve gözlenenin birbirini bütünleyici unsurlar olarak nitelendirilmesi fotonların, elektronların ve diğer parçacıkların birbirine bağımlı hareket etmeleri bu bütünlüğü ortaya koymaktadır.

Kuantum teorisinin doğuşundan günümüze gelene kadar ki sürecine bakıldığında bu teorinin, fiziğin uygulamalı bir dalı olduğunu gözden kaçırmamalıyız. Sayısız deneyler yardımıyla kuantum teorisinin genel esasları ortaya konabilmiştir. Diğer yandan Young deneyi problemi gibi gözlemci, gözlenen, zaman kavramları üzerinde net bir felsefi çözüme gidilememiştir. Felsefi çatıdaki eksikliklere rağmen, kuantum teorisinin varlığıyla laser, elektron mikroskobu, transistor gibi çok kullanışlı ve insanlığın bilimsel teknolojik ilerlemesine ışık tutabilecek araçlar elde edilebilmiştir. Yine atom ve çekirdek yapısı, elektriğin nakli, katıların mekanik ve ısıma özellikleri gibi fenomenler çırpıda açıklanmıştır.

Öyle görülüyor ki bilim adamlarının tüm evreni tanımlayan bir teoriye varması başka bir deyişle fiziğin tamamlanması daha çok uzun zaman alacak gibi ama kuantum teorisinin bu yolda daha pek çok işi halledeceği açıkça ortada.

Erol KURT
Gazi Uni. Fen Fak Fizik Böl. Arş. Gör.
ANKARA-1997


Kaynakça

1) Kuantum Fiziği-Prof. Necati Yalçın

2} Tann ve Yeni Fizik-Paul Davies/Çev. Murat Temelli

3) X ışınlarından Kuarklara-Emilio Segre/Çev. Doç. Dr. Çağlar Tuncay

Bu yazı Popüler Bilim Dergisi’nin Kasım 1997 sayısında yayınlanmıştır.
 

Hiçbir yazı/ resim  izinsiz olarak kullanılamaz!!  Telif hakları uyarınca bu bir suçtur..! Tüm hakları Çetin BAL' a aittir. Kaynak gösterilmek şartıyla  siteden alıntı yapılabilir.

 © 1998 Cetin BAL - GSM:+90  05366063183 -Turkiye/Denizli 

Ana Sayfa  / Index  / Roket bilimi / E-Mail / Quantum Teleportation-2   

Time Travel Technology / UFO Galerisi / UFO Technology/

Kuantum Teleportation / Kuantum Fizigi / Uçaklar(Aeroplane)

New World Order(Macro Philosophy) / Astronomy